Permafrost & climate change in northern Finland

Dr Steve Gurney
Senior Lecturer in Geomorphology
University of Reading, UK
Docent in cold climate geomorphology
University of Turku, Finland
Topics

- Introduction
- Permafrost & palsas
- Climate in northern Finland
- Mires in northern Finland
- Palsas in northern Finland
- Palsas: formation & decay
- Palsas & climate change
- Conclusions
Introduction

- In Finland permafrost is only found on the northern fells and in palsa cores
- The permafrost here is ‘warm’ so it is very sensitive to climate change
- Most Finnish palsa cores appear to be in decay
- Palsa decay may lead to greater methane (CH₄) emissions from northern mires (methane is a ‘Greenhouse Gas’)}
Permafrost
“Earth materials (soil, sediment or rock) that remains at or below 0°C for a period of at least two years”

Palsas
“Perennial mounds in a peat bog with a frozen core containing segregated ice”
Finland

- Large country at 338,145 km²
- Relatively low lying
- About 25% mires (>30% before drainage)
- Has a ‘seasonal frost’ climate
- Permafrost occurs on fells & in palsa cores in the north only
Permafrost in Finland

Discontinuous - on fells (tunturi)

Sporadic - in palsa cores
Geomorphology, including palsa distribution, northern Finland
Climate of northern Finland

- Winters are moist & cold
- North of the arctic circle the m.a.a.t. is often <0°C
- Drier than the south at about 400-600 mm per annum
- The uplands (fells) of Finnish Lapland have a specific microclimate
Mean annual temperatures in northern Finland 1931-1961
Seasonal Frost Climate

- The climate and substrates in northern Finland mean that seasonal frost is an important geomorphological factor.
- Seasonal frost has created:
 - stone stripes
 - stone polygons
 - earth hummocks (pounu)
 - palsas (perennially frozen core)
Palsa mire landscapes of northern Finland
Mires in Finland

- Before mire drainage in the 20th century, mires occupied >30% of the land area in Finland.
- Finnish mires can be divided into three zones: Raised Bog, Aapa and Palsa.
- Mires can be ombrotrophic (rain-fed) or minerotrophic (stream-fed).
Palsa mires

- Basically these are a periglacial form of mire and contain ‘permafrost’
- Instead of the ‘strings’ and ‘flarks’ of aapa mires, palsas (up to 7 m high) along with pounus (< 0.5 m high) form the microtopography
- Only found in northernmost Finland where the MAAT is < -0.5°C
Mire classification in northern Finland
Palsas in northern Finland

- From the Lapp for a ‘mound in a peat bog’
- Contain a segregated ice core (in the peat)
- Occur in clusters in palsa mires
- From 0.2 to 7 m high and 4 to 100 m long axis
Palsa types in northern Finland

Peat palsa

Mature peat palsa

[Diagram showing different types of pallas, with labels for peat, silt, segregated ice, and permafrost boundary]
Palsa requirements

• MAAT between -0.5 to -3°C
• Relatively thin winter snow cover
 – Wind may redistribute snow
• Thermal properties of peat:
 – Insulates the ground in summer (if dry)
 – Enhances the cooling of underlying materials in winter
• Peat cools readily and thaws only slowly
Palsa growth & decay cycle (process = cryosuction)
Palsa formation - 1

• Snow cover removal hypothesis
 – Seppälä
 – Finland
 – Tested experimentally
 – Snow is a good insulator
 – Snow removal leads to deep frost penetration
Palsa formation - 2

• Vegetation change hypothesis
 – Railton & Sparling
 – Canada
 – Based on albedo changes associated with vegetation changes
Palsa formation - 3

• Buoyancy hypothesis (USA)
 – Nelson et al (computer model)
 – North America
 – Idea that a parcel of peat with included ice is more buoyant than the surrounding mire and rises up
Palsa core temperature measurements -1.1°C
Coring in a palsa mire (Kaktsavárjeäggi)
Palsa Mire Vegetation

- Flarks
 - Cotton grass (*Eriophorum* species)
 - Sphagnum moss (*e.g.* *Sphagnum lindbergii*)
 - Sedges (*Carex species*)

- Palsas
 - Crowberry (*Empetrum nigrum*)
 - Labrador Tea (*Ledum palustre*)
 - Cloudberry (*Rubus chamaemorus*)
 - Dwarf Birch (*Betula nana*)
 - Reindeer moss (*Cladonia* species – lichen)
Betula nana
Rubus chamaemorus
Ledum palustre
Empetrum nigrum
Palsa Decay

- Natural process (may be accelerated)
- Dilation cracking in the peat due to volumetric increase leads to:
 - Thermokast (ice core melt)
- Thermal and mechanical erosion by adjacent pools (flarks)
- Deflation of the peat surface by wind
- Thermal contraction cracking
Collapsing palsā (Kaktsavarjeäggī)
Palsas & climate change

• Palsas may be useful indicators of climate change
• Current palsa distribution may only be a small remnant of the previous distribution
• Increasing summer precipitation may be more damaging to palsas than increasing air temperatures (wet peat)
• Palsa decay may contribute to climate change (through methane release)
Measuring pH, temperature & redox potential in the surface waters and peat at depth in a palsamire (Kaktsavarjeäggi)
Conclusions

• Warmer winters or summers may lead to a lower incidence of embryo palsas
• Increased summer precipitation and temperatures may lead to a more rapid decay of mature palsas
• Ultimately, palsas may decay completely in Finland and the northern aapa mire zone will simply extend further north
Acknowledgements

• Professor Jukka Käyhkö, University of Turku, Finland
• Dr Richard Mourne, University of the West of England, UK
• Professor Friedrich-Karl Holtmeier, University of Münster, Germany
• Kevo Sub-Arctic Research Station, Finland
• LAPBIAT, EU 6th Framework
• Finland Fieldclass (Reading/Turku), 2005